ヤマカサのプログラミング勉強日記

プログラミングに関する日記とどうでもよい雑記からなるブログです。

Python機械学習プログラミング 達人データサイエンティストによる理論と実践 part. 4

Python機械学習プログラミング 達人データサイエンティストによる理論と実践

第3章

正則化

異常なパラメータに制限を課すために正則化を行います.逆正則化パラメータ $C$ を用いて,コスト関数を

\begin{align} J(\boldsymbol{w}) = C \sum_{i = 1}^{n} [y^{(i)} \log(\phi (z^{(i)})) + (1-y^{(i)}) \log (1 - \phi (z^{(i)}))] + |\boldsymbol{w}|^{2} \end{align}

と修正します.

サポートベクトルマシン

決定境界のマージンを最大化するためにSVMを使います.マージンが最大化されることで汎化誤差の影響を抑えます.

from sklearn import datasets
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn.svm import SVC


def plot_decision_regions(X, y, classifier, test_idx=None, resolution=0.02):
    markers = ('s', 'x', 'o', '^', 'v')
    colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')
    cmap = ListedColormap(colors[:len(np.unique(y))])
    x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1
    x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1
    xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),
                           np.arange(x2_min, x2_max, resolution))
    Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)
    Z = Z.reshape(xx1.shape)
    plt.contourf(xx1, xx2, Z, alpha=0.3, cmap=cmap)
    plt.xlim(xx1.min(), xx1.max())
    plt.ylim(xx2.min(), xx2.max())

    for idx, cl in enumerate(np.unique(y)):
        if markers[idx] == 'x':
            plt.scatter(x=X[y == cl, 0],
                        y=X[y == cl, 1],
                        alpha=0.8,
                        c=colors[idx],
                        marker=markers[idx],
                        label=cl,)
        else:
            plt.scatter(x=X[y == cl, 0],
                        y=X[y == cl, 1],
                        alpha=0.8,
                        c=colors[idx],
                        marker=markers[idx],
                        label=cl,
                        edgecolor='black')


iris = datasets.load_iris()
X = iris.data[:, [2, 3]]
y = iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1, stratify=y)
sc = StandardScaler()
sc.fit(X_train)
X_train_std = sc.transform(X_train)
X_test_std = sc.transform(X_test)

X_combined_std = np.vstack((X_train_std, X_test_std))
y_combined = np.hstack((y_train, y_test))

svm = SVC(kernel='linear', C=1.0, random_state=1)
svm.fit(X_train_std, y_train)

plot_decision_regions(X_combined_std,
                      y_combined,
                      classifier=svm,
                      test_idx=range(105, 150))
plt.xlabel('petal length [standardized]')
plt.ylabel('petal width [standardized]')
plt.legend(loc='upper left')
plt.tight_layout()
plt.show()

サポートベクトルマシンによる決定境界